نوشته‌های پیوسته با: قدر مطلق و محاسبهٔ تقریبی – ریاضی نهم

۱۳۹۶
آبان ۲

جواب سوال ۴ تمرین صفحه ۳۱ ریاضی نهم

مقدار عددی عبارت |a|+a را به ازای a=0,a=-2 و a=2به دست آورید. آیا می توانید عددی حقیقی به جای aقرار دهید که حاصل |a|+a منفی باشد؟

مقادیر داده شده را در عبارت قرار می دهیم.و حاصل را به دست می آوریم.

\xRightarrow{a=2}\underbrace{|2|}_{2}+2=4
\xRightarrow{a=0}\underbrace{|0|}_{0}+2=2
\xRightarrow{a=-2}\underbrace{|-2|}_{2}+(-2)=0

برای دیدن ادامه پاسخ باید در سایت عضو شوید.
ورود عضویت
۱۳۹۶
آبان ۲

جواب قسمت ب سوال ۲ تمرین صفحه ۳۱ ریاضی نهم

عبارات زیر را بدون استفاده از قدرمطلق بنویسید:

|7-5\sqrt{3}|

مقدار تقریبی -5 \sqrt{3}را مشخص می کنیم. و علامت عبارت درون قدر مطلق را تعیین می کنیم

-5 \sqrt{3}\simeq -5 \times 1/7=-8/5 بازنویسی {\color{crimson}{\downarrow}}
|7 \underbrace{-5 \sqrt{3}}_{-8/5}|=|\underbrace{-1/5}_{- \lt 0}|

برای دیدن ادامه پاسخ باید در سایت عضو شوید.
ورود عضویت
۱۳۹۶
آبان ۲

جواب سوال ۱ تمرین صفحه ۳۱ ریاضی نهم

اگر c=2 \frac{1}{2},b=-\frac{1}{4},a=0/25 باشد،حاصل عبارت زیر را به دست آورید:

|a+b|+2|a-b-c|

اعداد داده شده را در عبارت جای گذاری می کنیم:

| \underbrace{a}_{0/25}+\underbrace{b}_{-\frac{1}{4}}|+2|\underbrace{a}_{0/25}-\underbrace{b}_{-\frac{1}{4}}- \underbrace{c}_{2 \frac{1}{2}}| بازنویسی {\color{crimson}{\downarrow}}
| 0/25 +(-\frac{1}{4}) |+2|0/25 -(-\frac{1}{4}) - 2 \frac{1}{2}|

برای دیدن ادامه پاسخ باید در سایت عضو شوید.
ورود عضویت